If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-1520=0
a = 1; b = 1; c = -1520;
Δ = b2-4ac
Δ = 12-4·1·(-1520)
Δ = 6081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{6081}}{2*1}=\frac{-1-\sqrt{6081}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{6081}}{2*1}=\frac{-1+\sqrt{6081}}{2} $
| 6/7c+9=51 | | 5/6(24t-6)=95 | | 7(3k+2)=77 | | 12x-18=(2x-3) | | 1.1-x=1 | | 10r+6=69 | | 2x+3/4=-x+3 | | 12b-(5+2b)=-7 | | 0+5y=-1 | | 2(3x-2)=21 | | 0.96/x=0.12 | | x^2+9x-720=0 | | 4x/8+9=x | | 4(10x-6)-6(4x-2)=18 | | 4x+8=5x-3I | | 5x+1/4-2x-1/2=x | | 5n^2-102n+360=0 | | 11n^2-103n+240=0 | | 80x10^(-0.2x)=2x-2 | | -8.2-3x-5.1-x=-3x-3.1 | | 35x+7=12x-3 | | (t-2)(t+2)=0 | | 48x+10=18x-8 | | 38x+10=18x-8 | | 4x+16-16=-4 | | 41.2^x-12.6^x-1=0 | | 189=125-x | | 2^(2x+1)-129(2^x)+64=0 | | 6x-9-6(1+x)=x-9 | | (3p)(-3)=36 | | 8x-16=x+19 | | 10y-11=4y+7 |